skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arora, Anudeep K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time. 
    more » « less